8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования, когда использование внешнего измерительного блока 16: 02

Содержание

Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования iXBT.com, когда использование внешнего измерительного блока невозможно 29.02.2016 16:02

Не так давно мы опубликовали нашу новую методику измерения энергопотребления с использованием внешнего измерительного блока, однако она имеет одно существенное ограничение. Дело в том, что используемый нами измерительный блок жестко привязан к разъемам питания на материнской плате и должен подключаться к 24-контактному (ATX) и 8-контактному (EPS12V) разъемам питания на материнской плате и к аналогичным разъемам блока питания. Это позволяет использовать данный измерительный блок при тестировании процессоров и материнских плат, но если речь заходит о тестировании ноутбуков, моноблоков и неттопов, то использование данной методики не представляется возможным.

Поэтому специально для тех случаев, когда использование внешнего измерительного блока невозможно, мы сделали отдельный программный плагин, позволяющий контролировать мощность потребления процессора, его температуру и уровень загрузки.

Как и в случае с внешним измерительным блоком, речь идет о плагине к нашему бенчмарку iXBT Application Benchmark 2016. Напомним, что данный бенчмарк включает в себя 17 отдельных тестов на основе реальных приложений и позволяет оценивать производительность системы в различных сценариях использования путем замера времени выполнения тестовых задач и сопоставления этого времени со временем выполнения этих задач на референсной системе.

Принцип мониторинга мощности, температуры и загрузки процессора

Идея, положенная в основу работы нашего программного плагина заключается в следующем. На тестируемом компьютере в фоновом режиме запускается специализированная программа мониторинга, которая способна контролировать требуемые параметры системы. Такая программа мониторинга через определенные интервалы времени опрашивает датчики и контроллеры на материнской плате, что позволяет в режиме реального времени отслеживать огромное количество различных параметров. Конечно, нет необходимости отслеживать все параметры, в нашем случае мы ограничились только тремя: мощность, потребляемая процессором, его температура и уровень загрузки.

Далее, синхронно с началом выполнения тестовой задачи, программа мониторинга начинает собирать требуемые данные, а синхронно с моментом окончания выполнения тестового задания все собранные данные записываются в файл, который впоследствии обрабатывается программой бенчмарка.

Вопрос лишь в том, какую именно программу мониторинга использовать.

Первоначально мы остановили свой выбор на программе Open Hardware Monitor, интегрировав ее в наш бенчмарк. Эта программа умеет записывать log-файлы и подходит по всем параметрам, однако впоследствии нам пришлось от нее отказаться. Дело в том, что последнее обновление этой программы датировано 2014 годом, новых процессоров Skylake программа не понимает и не способна определять нужные нам параметры. Последний процессор, который знает эта программа — Broadwell.

В итоге мы остановились на программе HWiNFO64, которая регулярно обновляется и знает все процессоры. Кроме того, она позволяет отключать мониторинг тех датчиков, которые не нужны, поддерживает назначение горячей клавиши для старта и останова сбора данных, записывает данные в CSV-файл, а также позволяет задавать интервал времени опроса датчиков.

Для интеграции данной программы с нашим бенчмарком мы использовали портативную версию программы, не требующую инсталляции на компьютер. Однако данная программа нуждается в предварительной настройке для корректной работы с нашим бенчмарком.

Во-первых, нужно отключить мониторинг тех параметров, которые не используются, оставив, в итоге, только три параметра: мощность, потребляемую процессором (CPU Package Power), температуру процессора (CPU Package) и загрузку процессора (Total CPU Usage).

Во-вторых, необходимо задать интервал опроса датчиков (Scan Interval) и назначить горячую клавишу (Hot Key) для начала и окончания сбора данных.

В-третьих, необходимо задать параметры запуска программы, отключив приветственное окно, минимизировав основное окно и оставив на рабочем столе только окно сенсоров (Show Sensors on Startup). В противном случае, как показала практика, горячая клавиша может срабатывать, а может и не срабатывать.

Как уже отмечалось, данные, сохраняемые программой HWiNFO64 в CSV-файле, далее анализируются бенчмарком iXBT Application Benchmark 2016. Рассчитывается средняя за время выполнения тестовой задачи мощность, потребляемая процессором, а также средний уровень его загрузки. Расчет средней за время теста температуры мы сочли бессмысленным, поэтому определяется максимальная достигнутая температура. Именно эти три параметра и записываются вместе со временем выполнения тестовой задачи в качестве результата каждого теста.

Представление результатов тестирования

Аналогично тому, как это делается в бенчмарке iXBT Application Benchmark 2016, при дополнительном мониторинге мощности, температуры и загрузки процессора для каждого теста рассчитывается среднеарифметический результат по указанным дополнительным параметрам и погрешность измерения для доверительного интервала 0,95. Результаты измерения записываются в соответствии с общепринятыми правилами записи результатов с погрешностью.

Преимущества и недостатки методики

К несомненным преимуществам данной методики можно отнести то обстоятельство, что для ее реализации не требуется никакого дополнительного оборудования. Решение исключительно программное и может использоваться при тестировании любых систем (в отличие от специализированного измерительного блока).

Тем не менее, есть и обратная сторона медали. Во-первых, запуск дополнительной программы мониторинга в фоновом режиме может, теоретически, негативно отразиться на результатах тестирования. Для того чтобы минимизировать влияние фоновой программы мониторинга на результаты тестирования, мы отключаем мониторинг всех ненужных датчиков. Как показывает практика (об этом чуть далее), во всяком случае для производительных процессоров, запуск программы мониторинга не отражается на результатах тестирования.

Во-вторых, системы и процессоры бывают разные, и датчики, соответственно, тоже. Вполне вероятна ситуация, что для каких-то процессоров данная методика окажется неработоспособной по причине того, что программа HWiNFO64 просто не сможет отслеживать требуемые параметры. На сегодняшний момент мы проверили работоспособность программы на процессорах Intel семейств Sandy Bridge, Haswell и Skylake. Но не факт, что все будет работать как нужно с процессорами Intel Atom или процессорами AMD.

В-третьих, датчики, интегрированные на плате и в процессоре, все-таки не являются специализированными измерительными блоками. Их показания могут, мягко говоря, отклоняться от действительных. К примеру, известная программа AIDA64 (в ней используется опрос тех же самых датчиков, что и в программе HWiNFO64) иногда выдает полную лажу (когда температура процессора оказывается даже ниже комнатной температуры).

Пример результатов тестирования

В заключение продемонстрируем пример результата тестирования с мониторингом мощности, температуры и загрузки процессора. Кроме того, сравним результаты тестирования с программным мониторингом и результаты тестирования с измерением потребляемой мощности при помощи внешнего измерительного блока.

Стенд для тестирования имел следующую конфигурацию:

Процессор Intel Core i7–6700K
Материнская плата Asus Sabertooth Z170 S
Чипсет Intel Z170
Оперативная память 16 ГБ DDR4–2133 (2 канала)
Накопитель SSD Seagate ST480FN0021 (480 ГБ)
Операционная система Windows 10 (64-битная)

Процессор работал в штатном режиме (без разгона) с активированной технологией Turbo Boost. Результаты тестирования с программным мониторингом мощности, температуры и загрузки процессора представлены в таблице.

Логическая группа тестов Результат тестирования, секунды Мощность процессора, Вт Максимальная температура, °C Уровень загрузки, %
Работа с видеоконтентом, баллы 334±6
MediaCoder x64 0.8.36.5757 113,0±0,5 88,6±0,2 92±3 95,1±0,3
SVPmark 3.0.3b, баллы 3330±50 64±4 87±5 64±5
Adobe Premiere Pro CC 2015.0.1 291,1±0,7 77±4 94±5 95,4±0,6
Adobe After Effects CC 2015.0.1 464±3 37,3±0,3 77±3 30,4±0,5
Photodex ProShow Producer 7.0.3257 391±5 54,3±0,3 82±4 42,4±0,3
Обработка цифровых фотографий, баллы 305±2
Adobe Photoshop CC 2015.0.1 630±10 51,4±0,8 80±2 56,0±0,4
Adobe Photoshop Lightroom 6.1.1 316±2 71,83±0,03 86±2 93,3±0,4
PhaseOne Capture One Pro 8.2 368±3 39±4 68±5 46±5
ACDSee Pro 8.2.287 205±8 39,2±0,7 72,0±0,5 40±1
Векторная графика, баллы 182,7±0,3
Adobe Illustrator CC 2015.0.1 350,3±0,7 25,0±0,2 68±3 13,05±0,06
Аудиообработка, баллы 290±3
Adobe Audition CC 2015.0 358±10 45±11 73±3 39±3
Распознавание текста, баллы 385±2
Abbyy FineReader 12 Professional 147±3 62±2 85±2 71±2
Архивирование и разархивирование данных, баллы 244±7
WinRAR 5.21 архивирование 103±2 53,4±0,9 70±2 78,4±0,7
WinRAR 5.21 разархивирование 6,8±0,4
Файловые операции, баллы 171±6
Скорость инсталляции приложений 333±3 21,21±0,07 61±3 11,05±0,09
Копирование данных 70±2 15±1 55±2 11,3±0,7
UltraISO Premium Edition 9.6.2.3059 28±1 7,3±0,5 49±7 7,5±0,9
Научные расчеты, баллы 289±7
Dassault SolidWorks 2016 SP0 с пакетом Flow Simulation 247±5 61,6±0,3 79±2 91,1±0,7
Интегральный результат производительности, баллы 266±6

Далее рассмотрим результаты тестирования с аппаратным измерением потребляемой мощности:

Установка и настройки

Скачиваем программу с официального ресурса. В процессе установки нам предложат установить еще одну программу — Rivatuner Statics Server, даем согласие и завершаем установку. После окончания процесса перед нами появится главное окно программы. Кликнув на значок в виде шестеренки, переходим в меню.

Нужные нам параметры находятся во вкладке «Мониторинг». Здесь расположено множество данных для отслеживания. Для включения конкретного пункта в оверлей ставим галочку напротив пункта и параметра «Показывать в ОЭД». Также можно выделить несколько пунктов разом зажав клавишу Shift. Для сохранения настроек нажимаем кнопку «Ок» и заходим в игру.

В левой части экрана появился наш информационный оверлей. Он предоставляет исчерпывающую информацию о состоянии комплектующих. Но в таком виде он выглядит громоздким и может мешать непосредственно процессу игры.

Вернемся на вкладку «Мониторинг» и оставим лишь самые основные пункты, которые нам понадобятся, а именно:

Пункты в мониторинге Отображение во внутриигровом оверлее Назначение
Температура ГП GPU Температура видеокарты в °C
Загрузка ГП В строке GPU Процент загрузки видеокарты
Загрузка памяти MEM Количество мегабайт видеопамяти используемой видеокартой
Температура ЦП CPU Температура процессора в °C
Загрузка ЦП В строке CPU Процент загрузки процессора
Загрузка ОЗУ RAM Количество мегабайт оперативной памяти используемой в данный момент
Частота кадров D3D11 Количество кадров в секунду

С учетом изменений оверлей примет следующий вид:

Он стал лаконичнее, но при конкретном разрешении «картинки» в 2К — все же мелковат. Далее нам потребуется более точечная настройка.

Как проверить температуру Windows 10 без программ

В Windows 10 отсутствует удобная штатная утилита для проверки и мониторинга CPU. Однако измерить температуру можно через BIOS или командную строку, если у пользователя нет желания дополнительно скачивать специальную программу.

Для поверки температуры CPU в меню BIOS (UEFI) необходимо следовать инструкции:

  1. Запустить настройки Биоса: перезагрузить компьютер, и с момента его включения до загрузки операционной системы зажать специальную комбинацию клавиш, которая зависит от типа ПК. Это может быть клавиша Delete (Del), F1, F2, F8, F10 или F Чтобы узнать, какую именно кнопку нажимать, нужно посмотреть на надпись на экране, которая появляется при каждой загрузке ОС. На дисплее может отобразиться что-то вроде «Press F2 to setup» или «Press Del for setup».
  2. Для того чтобы процесс запуска BIOS завершился успешно, нужно в момент включения ПК несколько раз нажать на ключевую клавишу – интервал между нажатиями не должен превышать 2 секунды.
  3. Меню Bios варьируется в зависимости от ПК. Как правило, все вкладки на английском языке. Интерфейс представляет собой комбинацию из сине-белых цветов. На каждой вкладке располагаются определенные системные параметры, значение которых можно менять вручную. Навигация в разных версиях Bios строится по одному принципу: чтобы переходить между разделами, достаточно нажимать на стрелки «Влево» и «Вправо». После перехода в нужный раздел для выбора того или иного элемента следует использовать стрелки «Вниз» и «Вверх». Изменение параметров осуществляется посредством нажатия на «Enter».
  4. После загрузки Биоса необходимо перейти при помощи стрелки во вкладку «Power» и посмотреть на параметр «Hardware Monitor». Также этот параметр может иметь название «Status» или же «PC Health Status», а в большинстве современных ПК параметр temperature расположен в левой части экрана настроек. Однако в старых устройствах данный параметр в принципе отсутствует.

  • Для выхода из Биоса без сохранения текущих настроек нажать на клавишу Esc.
  • В BIOS можно посмотреть температуру CPU только в состоянии покоя, так как до загрузки операционной системы невозможно запустить стандартные приложения и «нагрузить» систему.

    Поэтому рекомендуется сначала «погонять систему», желательно до возникновения исходных проблем — и после зависания компьютера зайти в Bios и посмотреть параметры производительности.

    Приборы и приспособления для диагностики компьютеров и оргтехники

    Количество находящегося в эксплуатации разнообразного электронного оборудования растет с каждым днем. Значительная его часть может нормально функционировать только при регулярном техническом обслуживании, поскольку, как и любая другая техника, оно порой выходит из строя и требует ремонта. О приборах, которые помогают выполнять эти виды работ, и пойдет речь ниже.

    Сегодня самым распространенным оборудованием в офисе является компьютер и его периферия (принтеры, видеомониторы, накопители). Этого, к сожалению, нельзя сказать о средствах диагностики — они по-прежнему остаются большой редкостью. Причин тому несколько: высокая стоимость таких приборов, зачаточное состояние отечественных сервисных служб и, в немалой степени, развитые возможности самодиагностики компьютеров и периферии (в случае простых неисправностей компьютер способен диагностировать себя сам). Имеющиеся диагностические программы позволяют, в частности, тестировать память, накопители на гибких и жестких дисках, внешние интерфейсы (для этого в разъем достаточно установить заглушки, в которых входы соединены с выходами). Кроме того, в комплекте с отдельными модулями (например, звуковой картой) помимо драйверов производители поставляют и специализированные программы для их диагностики.

    Но для того, чтобы запустить любую программу, компьютер необходимо сначала загрузить. Если же после включения питания он не подает признаков жизни, то тогда, воспользовавшись модульной конструкцией компьютера, неисправность можно попытаться отыскать методом замены. Такой метод позволяет выявить большую часть неисправных модулей. Правда, он всегда таит в себе опасность выхода из строя нового модуля при его установке в неисправный компьютер (особенно если неработоспособность компьютера вызвана неисправностью шинных формирователей материнской платы).

    ДИАГНОСТИКА МАТЕРИНСКИХ ПЛАТ

    Средства диагностики материнской платы представляют собой модуль, подключаемый к ее системной магистрали. Они представлены достаточно большим числом разновидностей, отличающихся типом поддерживаемой магистрали (ISA, MCA, PCI) и набором возможностей. Функциональность простых устройств ограничивается отображением POST-кодов BIOS (power on self test — результаты самотестирования после включения питания), индикацией сигналов магистрали и контролем питающего напряжения. В своей работе они используют средства BIOS или тесты, загружаемые из ПЗУ на самом модуле. Более сложные устройства осуществляют, помимо этого, диагностику адресации, прямого доступа к памяти и прерываний. Кроме того, в ПЗУ могут содержаться и универсальные программы тестов для всех основных узлов компьютера (клавиатуры, интерфейсов, накопителей).

    У всех упомянутых выше устройств выбор тестов осуществляется с помощью переключателей, а отображение — на светодиодных цифровых и позиционных индикаторах. Следовательно, основная роль в этих системах отводится человеку, а автоматизация и документирование процесса тестирования и диагностики невозможны. Более мощные диагностические системы свободны от этого недостатка: они содержат в своем составе процессор, благодаря которому тестирование выполняется в автоматическом режиме. Управление и отображение результатов осуществляются с помощью программного обеспечения с другого компьютера: он подключается к основному устройству через последовательный интерфейс. Такие системы не только осуществляют полное тестирование компьютера в автоматическом режиме (включая проверку интерфейса клавиатуры), но и реализуют другие дополнительные функции (сигнатурный и логический анализатор), наличие которых позволяет использовать их для диагностики при серийном производстве.

    ТЕСТИРОВАНИЕ МОДУЛЕЙ ПАМЯТИ

    Пожалуй, самой распространенной проблемой является неустойчивая работа оперативной памяти, из-за чего компьютер может периодически выходить из строя в самый неподходящий момент. Такие неисправности можно определить только с помощью специализированных тестеров. Тестирование без изъятия модулей памяти из компьютера позволяет выявить лишь полностью вышедшие из строя модули памяти. Качество тестирования на специализированном оборудовании существенно выше, так как оно выполняется в стрессовых условиях, с использованием более сложных алгоритмов, при повышенном или пониженном напряжении и с варьированием временных параметров процедур записи/считывания. Кроме того, некоторые тестеры могут измерять реальные временные параметры модулей памяти. Ввиду разнообразия имеющихся модулей памяти тестеры имеют соединители нескольких типов или поставляются вместе с переходниками.

    ДИАГНОСТИКА ДИСКОВЫХ НАКОПИТЕЛЕЙ

    Как отмечалось выше, для тестирования накопителей на жестких магнитных дисках универсальных тестовых программ оказывается вполне достаточно (конечно, при наличии достоверно исправного интерфейса). Немного сложнее ситуация с накопителями на гибких дисках. Если дискета в таком накопителе читается и записывается, то это отнюдь не значит, что она будет восприниматься накопителями других компьютеров. Убедиться в совместимости или добиться ее юстировкой головок позволяет применение эталонных диагностических дискет. Уровень снимаемого с головки сигнала можно оценить с помощью осциллографа. Однако процесс настройки может быть существенно упрощен при использовании специальной тестовой программы. Такая программа в реальном времени отображает на экране компьютера результаты считывания информации и, таким образом, упрощает оценку точности позиционирования обеих головок.

    РЕМОНТ ВИДЕОМОНИТОРОВ

    Проверить качество работы видеомонитора в различных режимах позволяет большинство универсальных диагностических программ. Но для этого вам потребуется компьютер с соответствующей видеокартой. Между тем эту работу можно существенно упростить за счет использования генераторов тестовых сигналов. Генераторы могут выдавать все компоненты видеосигнала (VIDEO, Y, RGB, V-SYNC, H-SYNC) и композитный видеосигнал в цифровой и аналоговой форме в широком диапазоне частот развертки. Для обеспечения совместимости с различными типами входов видеомониторов они могут иметь разъемы различного вида. Кроме формирования развертки в заданном режиме генераторы могут выдавать монохромный или цветной испытательный сигнал для регулировки цепей видеомониторов.

    ТЕСТИРОВАНИЕ ПОСЛЕДОВАТЕЛЬНЫХ И ПАРАЛЛЕЛЬНЫХ ИНТЕРФЕЙСОВ

    Очень часто проблемы передачи данных, вызванные неисправностями последовательного или параллельного интерфейса, могут быть диагностированы с помощью программных средств и заглушек, в которых входы соединены с выходами для организации петли.

    ДИАГНОСТИКА ПРИНТЕРОВ

    Немного проще обстоит дело с тестированием принтеров. Большинство из них имеет развитые встроенные средства диагностики. Иногда часть этих средств или информация о кодах ошибок имеется только у специалистов фирменных сервисных центров. Что касается матричных принтеров, то, благодаря их простоте, широкодоступных тестов для диагностики вполне достаточно. А вот лазерные принтеры требуют особого подхода. С одной стороны, в них слишком много компонентов, при выходе которых из строя выявить причину проблемы оказывается весьма непросто. С другой — их конструкция такова, что заглянуть внутрь во время их работы невозможно. Кроме того, некоторые модели просто не могут работать без компьютера, так как не имеют собственных средств отображения и управления. Поэтому диагностика лазерных принтеров без специального оборудования иногда напоминает гадание на кофейной гуще. Решение названных проблем дает тестер лазерных принтеров. Этот редкий прибор обеспечивает измерение всех необходимых для работы печатающего узла напряжений, устранение всех блокировок от удаленных узлов, эмуляцию клавиатуры и дисплея для работы с рассчитанными на программное управление принтерами, генерацию пробных изображений. Стоит отметить, что универсальные тестеры предназначены для работы с достаточно широким набором моделей принтеров различных производителей, где используются однотипные приводы (блок печати и картридж).

    ТЕСТИРОВАНИЕ СОЕДИНИТЕЛЬНЫХ ШНУРОВ

    Даже в организации среднего размера обслуживающему персоналу приходится постоянно заниматься проверкой шнуров различных периферийных устройств или, если они не отмаркированы, определением схемы их разводки. Если эта работа выполняется с помощью прозвонки, то на нее тратится очень много времени. Поэтому там, где подключено большое количество периферийных устройств, можно использовать специальные приборы для контроля шнуров, так как они позволяют в автоматическом или полуавтоматическом режиме проверить шнур на предмет выявления оборванных, замкнутых и неправильно подсоединенных проводов. Результаты тестирования (номера соединенных между собой контактов разъемов) отображаются на индикаторе. Обычно такие приборы способны тестировать кабели с любой комбинацией вилок и розеток DB9, DB15, DB25, Centronics, RJ-11 и RJ-45, а также коаксиальные кабели с соединителями RG-58, RG-59 и RG-62. Аналогичные приборы используются для тестирования кабелей и других интерфейсов (IDE, SCSI и т. п.).

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector